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Impact of regulatory proteins on the nonlinear dynamics of DNA
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In this paper we examine the nonlinear dynamics of a DNA chain whose exciton modes are affected by
regulatory proteins that may become bound to the DNA chain by hydrogen bonds. The dynamics of the DNA
chain is described by the Peyrard-Bishop model. Since this model gives rise to large-amplitude broad oscilla-
tions of base pairs, we consider the impact of attached regulatory proteins on the so-called breathers or bubbles.
Assuming that an ideal gas of bubbles may exist in the DNA chain at physiological temperatures we adopt a
statistical approach to calculate the average size of base-pair stretching under the prevailing conditions.
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I. INTRODUCTION

Deoxyribonucleic acid~DNA! is doubtlessly the most im
portant biomolecule. Its double stranded helical structure
dergoes a very complex dynamics and the knowledge of
dynamics provides insights into various related biologi
phenomena, such as transcription, translation, and mutat
The key problem in DNA biophysics is how to relate fun
tional properties of the DNA with its structural and physic
dynamical characteristics. In this paper our aim is to est
lish a plausible relationship between the regulation of tr
scription processes and the nonlinear dynamics of DNA.

The possibility that nonlinear effects might concentra
the vibrational energy of DNA into localized solitonlike ob
jects was first contemplated by Englanderet al. @1#. Al-
though several authors@2–9# have suggested that either t
pological kink solitons or bell-shaped breathers would
good candidates to play a basic role in the DNA nonlin
dynamics, there are still several unresolved questions in
regard. The hierarchy of the most important models for n
linear DNA dynamics was presented by Yakushevich@10#.

In the present paper we have strongly relied on the
tended model for DNA dynamics, first proposed by Peyr
and Bishop@7#. In the following, we first outline the main
features of that model, which will be henceforth referred
as the PB model for short. In that context we have exami
in detail the necessary conditions for the existence
breather excitations in DNA chains. We then focus our att
tion on the very important biophysical situation where t
breather solution of the PB model is suspected of playing
role of a conformational agent in the process of gene exp
sion. In that respect, the impact of regulatory proteins
breather dynamics was examined by the method of none
librium statistical physics allowing the calculation of an a
erage stretching distance of the base pairs involved.

The present paper is organized in the following way.
Sec. II, for clarity and conciseness we outline the PB mo
primarily proposed to describe the process of local open
of DNA base pairs~or local melting of the double helix!.
Then we have attempted to shed more light on the still so
what vague parameter values of the PB model. This is
portant in the determination of the necessary conditions
the existence of breather solitons. In Sec. III, we present
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class of specific regulatory proteins, which are attached
hydrogen bonds to a DNA chain. We conjecture that th
proteins, possessing a well-known carbon oxide stretch
mode could resonantly impact on the DNA dynamics
creasing the magnitude of stretching base pairs involved
the breather’s dynamics. In Sec. IV we present a discus
and conclusions regarding the feasibility of this approach
explaining the role of regulatory proteins in controlling ge
expression.

II. THE PHYSICAL CONCEPT OF THE PB MODEL
IN DNA

The B-form DNA in the Watson-Crick model@11# is a
double helix consisting of two strandsB1 andB2 ~see Fig. 1!
with the characteristic dimensions depicted. Molecu
masses of nucleotides~considered without adjacent sug
groups! range from 340~cytosine! to 380 mu ~guanine!.
Therefore, it is apparent that the four constituent base nu
otides~adenine, cytosine, guanine, and thymine! do not dif-
fer in their mass by more than 13%, thus inhomogenities
to the base sequences are usually ignored in biophys
models of DNA dynamics.

FIG. 1. Sketch of the double helix. The sugar-phosphate ba
bone is shown as ribbons. The bases are depicted as short trans
rods.
©2002 The American Physical Society01-1
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Consequently, a common massM is used for the bases
and the same coupling constantk for the nearest-neighbo
harmonic interactions along each strand is assumed, see
2~a!.

The strands are coupled to each other through hydro
bonds that are supposed to be responsible for transverse
placements of base pairs. According to the rule of Charg
and co-workers@12# there are only two types of base pairs
DNA; A-T andG-C pair, see Fig. 3. AnA-T pair is linked by
two, while G-C pair consists of three hydrogen bond
Hence, hydrogen bond variability in DNA exhibits a mo
conspicuous inhomogenity than the corresponding mass
tribution.

Nonetheless, this inhomogenity is neglected in the
model and the hydrogen bond interactions are averaged
and modeled by the Morse potential@see Fig. 2~b!#. The
three-dimensional helicoidal structure of the DNA chain i
plies that neighboring base nucleotides from different stra
are sufficiently close to interact through water filaments. T

FIG. 2. ~a! Schematic representation of the displacements in
DNA lattice; ~b! the corresponding Morse potential between ba
pairs; and~c! a bubble defect.
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means that a base at the siten of one strand, interacts with
both the (n14)th and the (n24)th bases of the other strand
Introducing the transverse displacementsun , vn , of the
bases from their equilibrium positions along the direction
hydrogen bonds the PB Hamiltonian@13# for the DNA chain
is given in the form

HPB5(
n

XS Pn1
2

2M
1

Pn2
2

2M D 1 1
2 k@~un2un21!21~vn2vn21!2#

1 1
2 K@~un2vn14!21~un2vn24!2#

1D$exp@2a~un2vn!#21%2C. ~2.1!

As already mentioned,M stands for the mass of a bas
nucleotide,Pn15Mun andPn25Mvn are the base momenta
k ~or K! is the harmonic elastic constant of the longitudin
~or helicoidal! springs. Finally,D anda are the depth and the
inverse width of the Morse potential well, respectively@see
Fig. 2~b!#.

It is more convenient to describe the transversal motion
the two DNA strands in terms of the center-of-mass coor
nates representing the in-phase and out-of-phase transv
motions

xn5
1

&
~un1vn!; yn5

1

&
~un2vn!. ~2.2!

The dynamical equations of motion derived from the Ham
tonian ~2.1! are then

Mẍn5k~xn111xn2122xn!1K~xn141xn2422xn!1¯

~2.3!

e
e

FIG. 3. Base pairs:~a! A-T and ~b! G-C. Hydrogen atoms tha
are substituted in DNA for carbon atoms of sugar rings are mar
by asterisks.
1-2
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Mÿn5k~yn111yn2122yn!2K~yn141yn2412yn!

12&aD~e2a&yn21!e2a&yn. ~2.4!

Equation ~2.3! describes the well-studied linear wav
~phonons! while Eq.~2.4! yields nonlinear solitonlike breath
ers. Consequently, we pay close attention to the nonlin
Eq. ~2.4! bearing in mind that a stable breather solution m
be viewed as a candidate for long-range interactions al
DNA chains.

According to the original approach of Ref.@13# it is as-
sumed that the oscillations of bases are large enough t
anharmonic, but still insufficient to break the bond since
plateau of the Morse potential is not yet reached. Thus,
presumed that the base nucleotides oscillate around the
tom of the Morse potential allowing the following transfo
mation to be safely implemented:

yn5eFn ; e!1. ~2.5!

Equation~2.4! can now be expanded to fourth order term
in e, resulting in the following form:

F̈n5
k

M
~Fn111Fn2122Fn!2

K

M
~Fn141Fn2412Fn!

2vq
2~Fn1eaFn

21e2bFn
3!2¯ , ~2.6!

where the new notation is introduced as

vq
25

4a2D

M
, a52

3a

&
, b5

7a2

3
. ~2.7!

Note that Eq.~2.6! possesses two time scales. The first o
corresponds to the vibrations of the nucleotide around
equilibrium position and the second, much larger, to
propagation of a collective coherent structure along the D
chain. Therefore, one can safely apply the reductive per
bation method expanding in the small parametere and using
a semidiscrete approximation@14#;

Fn~ t !5F1~en,,et !eiUn1e$F0~en,,et !

1@F2~en,,et !#ei2Un%1c.c.1U~e2!

and

Un5nq,2vt. ~2.8!

Here,v represents the optical frequency of the base-pair
brations,, is the distance between neighboring bases in
same strand, andq is the wave number whose role will b
discussed later.

Now we consider a continuum limit via a multiple-sca
expansion, where

Z5ez; T5et. ~2.9!

This means that the nonlinear excitation that emerges in
picture consists of a carrier wave modulated by a slow
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varying envelope. The expansion Eq.~2.8! together with the
scaling in Eq.~2.9! yield the following continuum approxi-
mation transformations:

F~n61!→F~Z,T!6FZ~Z,T!e,1 1
2 FZZ~Z,T!e2,2

F~n64!→F~Z,T!6FZ4e,1 1
2 FZZ~Z,T!16e2,2

and

F̈n→~e2F1TT22i evF1T2v2F1!eiU1e2F0TT

1~e3F2TT24i e2vF2T24ev2F2!e i2U1c.c.,

~2.10!

where FZ and FT stand for the corresponding derivative
with respect to the new variablesZ andT, etc. Following a
rather tedious algebra, we obtain a set of important relati
from Eq. ~2.6!. Equating the coefficients for the first ha
monic (eiUn) one obtains

e2F1TT22i evF1T2v2F1

5
k

M
$2F1@cos~q, !21#12i el F1Z sin~q, !

1e2l 2F1ZZ cos~q, !%2
K

M
$2F1@cos~4q, !11#

14i e,F12sin~4q, !116e2,2F1ZZ cos~4q, !%

2vq
2@F11e2~2aF0F112aF1* F213buF1u2F1!#.

~2.11!

After neglecting all the terms withe in Eq. ~2.11!, a disper-
sion relation is found to be in the following form:

v25vg
22

2k

M
@cos~q, !21#1

2K

M
@cos~4q, !11#.

~2.12!

From Eq.~2.12! one obtains the group velocity for the wav
packet as

Vg5
,

Mv
@k sin~q, !24K sin~4q, !#. ~2.13!

Equating the coefficients foreiUn and ei3Un we link the
functionsF0 , F1 , andF2 as follows:

F05muF1u2; F25dF1
2 , ~2.14!

where

m52
2a

S 11
4K

Mvg
2D ; d52

b

2a
. ~2.15!

Thus, taking into account Eq.~2.14!, then again introduc-
ing new independent variables
1-3
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S5Z2VgT, t5eT, ~2.16!

and equating coefficients withe2 in Eq. ~2.11!, one obtains a
nonlinear Schro¨dinger equation~NSE! for the leading term
F1 in the expansion, Eq.~2.8!,

iF 1t1PF1SS1QuF1u2F150. ~2.17!

Here, the dispersion coefficientP and the parameter of non
linearity Q are explicitly given by

P5
1

2v H ,2

M
@k cos~q, !216K2 cos~4q, !#2Vg

2J
~2.18!

and

Q52
vg

2

2v
@2a~m1d!13b# .

It is important to note that providedPQ.0, Eq. ~2.17!
exhibits an envelope-soliton solution called a breather~or a
bubble!, which is expressed as

F1~S,t!5A sechFS2uet

Le
GexpF iue~S2uet!

2P G¯ ,

~2.19!

where the envelope amplitudeA and its widthLe are ex-
pressed as follows:

A5
~ue

222ueuc!
1/2

2PQ
; Le5

2P

~ue
222ueuc!

1/2 ~2.20!

with ue anduc being the velocities of the envelope and t
carrier wave, respectively. Subsequently, by setting

Ve5Vg1eue ; U5q1
eue

2P
;

V5v1
eue

2P
~Vq1euc!¯ , ~2.21!

Eqs. ~2.19!, ~2.8!, ~2.9!, and ~2.14! can be transformed to
give a final form of the breather function as

Fn~ t !52A sechF e

Le
~n,2Vet !Gcos~Un,2Vt !

1eA sechF e

Le
~n,2Vet !G

3Fm2 1d cos 2~Un,2Vt !G . ~2.22!

In order to demonstrate that the condition for the ex
tence of a breatherPQ.0 is satisfied we now attempt t
make a careful numerical estimate. Before we do that, h
ever, it must be born in mind that the values of the para
eters involved in the PB model are still somewhat controv
sial. For example, by direct measurements of the interact
05190
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between bases ofA-T pairs using a surface force apparat
@15# it was revealed that the range of theA-T forces in water
is as large as 38 nm and it does not resemble any kn
surface force. It has also been shown that a small chem
change can noticeably modulate the interactions. As our
tial choice we adopt the set of parameter values ascribe
DNA in Ref. @13#, reserving the right to a reevaluation of th
choice at a later stage. The selected numbers are

k524 N/m, a5231010 m21,

K58 N/m, D50.1 eV,

l 53.4310210 m, ue5105 m/J

and

M55.4310225 kg, uc'0. ~2.23!

As a result, we are able to estimate the parameters invo
in the nonlinearity parameterQ:

m5
4a&

3
53.831010 m21; d5

7a&

18
'1.131010 m21 .

~2.24!

Thus using Eqs.~2.7! and ~2.18! we can infer that the in-
equalityQ.0 holds.

From Eq.~2.20! we see that the inequalityLe.0 follows
if both ue.2uc and P.0 hold. This implies that we mus
haveA.0, which can in fact be inferred from Eq.~2.20!.
Otherwise, the breather soliton could not exist. In summa
we expect that on the basis of the above choice of the mo
parameters the breather soliton should exist in the D
chain given the conditions in the PB model. Otherwis
based on the measurements reported in Ref.@15# we readily
conclude that the parametera should have a value at leas
two orders of magnitude smaller. Nevertheless the condi
Q.0 still holds, but it remarkably lowers the value of th
nonlinearity parameterQ. The outcome of this would be tha
the nonlinear term in NSE, Eq.~2.17!, could not be competi-
tive with the dispersive term, thus preventing the existen
of breather solitons. Since the method used in the meas
ment of the forces between base pairs@15# was not applied to
DNA itself but to some two-dimensional Blodgett films o
A-T pairs, it is still possible that such a large decrease in
value of the parametera is a result of the effect of collective
action of hydrogen bonds. Consequently, there is still an
ement of uncertainty remaining in the choice of the para
eter values.

We now wish to discuss some of the breather feature
the context of the dispersion parameterP. It should be no-
ticed from Eq.~2.18! that this parameter does not depend
any of the uncertain values~a, D!.

In Figs. 4 and 5, the group velocityVg and the dispersion
coefficient P are depicted versusq,, according to Eqs.
~2.13! and ~2.18!, respectively. The frequencyv was calcu-
lated from the dispersion relation given by Eq.~2.12!. For
Vg.0 and P.0, several multiples ofq, are allowed thus
favoring the existence of a breather. The intuition gained
studying nonlinear systems in condensed matter physics
1-4
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vors the conclusion that the wavelengthl of the lattice car-
rier wave (q52p/l) should be an integer multiple of lattic
spacing,. Thus the following four options are possible:

l156,, ~q,51.05 rad!;

l257,, ~q,50.90 rad!;

l358,, ~q,50.78 rad!;

l459,, ~q,50.70 rad!. ~2.25!

All these four values lie in the first allowed ‘‘zone’’ forl,
(5.7,,l,9.5,), or equivalently (0.66,q,,1.11). It is
natural to expect that other allowed zones do not contain
l as integer multiples of,. For example, the second zon
reads (2.3,,l,2.9,).

It is instructive to plot the functionFn(t), given by Eq.
~2.22!. We choosen5300 andv given by Eq.~2.12!. In Fig.
6 we selectedq,50.78 rad while in Fig. 7q,51.05 rad.

FIG. 4. Plot of the group velocityVg as a function ofq, accord-
ing to Eq.~2.18!.

FIG. 5. Plot of the dispersion parameterP as a function ofq,
according to Eq.~2.18!.
05190
y

The figures show typical breatherlike shapes indicating t
the choiceq,50.78 rad represents a more compact conf
mational excitation.

III. THE STATISTICAL MODEL OF A REGULATORY
PROTEIN-DNA INTERACTION

The idea of transmission of regulatory signals came fr
the results of experiments in which the so-called long-ran
effects were studied in DNA. To describe this effect, let
consider a simple system consisting of two protein molecu
and one DNA molecule,~Fig. 8!. It is assumed that the firs
regulatory protein molecule can bind~with good
efficiency—via the lock-and-key mechanism! to a special
segment of the DNA molecule. Let it be called site 1. It
also assumed that the other protein molecule is bound to
DNA at another site called 2. Numerous experimental d
@16,17# show that the first protein bound at site 1 influenc
the interaction of the second protein molecule with DNA
site 2. Furthermore, the distance between the sites can r
hundreds or even thousands of base pairs.

To explain this effect many alternative models of the a
tion at a long distance have been proposed@18,19#. Our pre-

FIG. 6. Plot of the functionFn(t) given by Eq.~2.22! for q,
50.78 rad.

FIG. 7. Plot of the functionFn(t) given by Eq.~2.22! for q,
51.05 rad.
1-5
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ferred assumption is that binding of the first protein molec
produces a mode of energy that is accompanied by a l
conformational distortion of base pairs causing a brea
excitation or enhancing the amplitude of an already exist
breather excitation. Such a breather propagates along
DNA chain, and upon reaching site 2 it changes the con
mational state of the site, which in turn changes the bind
constants of the second protein with the DNA chain.

Specific interactions of regulatory proteins with DNA a
usually defined through hydrogen bonding interactions
tween functional groups of amino acid side chains or
peptide bonds and groups of the bases in the major or m
grooves of the DNA chain. Here, we restrict our consid
ation to those regulatory proteins with hydrogen bonds to
DNA. Figure 9 represents the protein glutamine bound
two hydrogen bridges to anA-T base pair in the majo
groove@20#.

We recall that every protein has a peptide group, wh
contains a double-bonded carbon-oxygen complex~or
amide-I bond! with a characteristic quantum of energy
0.205 eV ~corresponding to a peak at 1650 cm21!. The
amide-I bond appears to be of great interest here as a po
tial ‘‘basket’’ for storage and transport of biological energ
This part of glutamine protein is indicated in Fig. 9 by a
ellipse. The amide-I exciton mode was prominently expo
in the theory of Davydov molecular solitons that was a
applied to a-helical chains@21,22#. However, a problem
arises when we note that in a single peptide group, the
time of an amide-I vibration is of the order of 10212 s @22#.
We conjecture that the energy of this mode could be utiliz
in producing a conformational change in a neighboring b
pair ~A-T! that is mediated by hydrogen bonds depicted b
rectangle in Fig. 9. Below we elaborate on the quantitat
description of such a model.

Let us first introduce the extended Hamiltonian in an
tempt to model the above regulatory process in DNA. T
Hamiltonian should consist of two parts as follows:

H5H01H int , ~3.1!

where the HamiltonianH0 consists of two terms, first o
which represents the part of the PB Hamiltonian~2.1! con-
taining the separated coordinatesyn and momentaPyn
5Mẏn , while the second one corresponds to the amid
mode in the regulatory protein, considered here. Hence,

H05Hy1HC50 , ~3.2!

FIG. 8. A schematic representation of the DNA molecule int
acting with two protein molecules. The DNA molecule is repr
sented by a black band; the sites interacting with proteins
shaded; protein molecules are represented by small circles.
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Hy5(
n

H Pyn
2

2M
1

k

2
~yn2yn21!21

K

2
@~yn2yn24!2

1~yn2yn14!2#1D~e2&ayn21!2J , ~3.3!

and

HC505EkCk
1Ck , Ek50.205 eV, ~3.4!

whereEk is the energy of the amide-I mode, whileCk
1 , Ck

represent the creation and annihilation operators, res
tively, of an excited state possessing the wave vectork.

Finally, H int describes the interaction between the amid
mode and the nearest base pairs of DNA. It could be con
niently written in the form

H int5(
m

H int
opf m~ t !, ~3.5!

where the operator part of the interaction is given as follow

-

re

FIG. 9. Protein-DNA hydrogen bonding. The structure of aC-G
base pair bound to arginine is shown following Ref.@20# in which
the guanidinium group of arginine binds to the N7 and 06 positio
of guanine. Glutamine can hydrogen bond specifically to the
enine, whereas the carbonyl oxygen group binds to the N6 pos
of adenine. A specific amino-acid–base-pair hydrogen bond ca
made in a minor groove between asparagine and aG-C base pair.
Asparagine binds with the terminal amino group to the N3 posit
of guanine, whereas the carbonyl oxygen hydrogen bonds to the
position of guanine.
1-6
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H int
op5~Ck1Ck

1!ym , ~3.6!

while the Heaviside-type interaction switching function h
the form

f m~ t !5Vme2s2~m2, !2
$u„t2 t̃~m21!…2u„t2 t̃~m11!…% .

~3.7!

Since we already usedt for a variable in Eqs.~2.16!–
~2.19! we now use a modified symbolt̃ in order to avoid
confusion. We assumed here that due to its hydrogen cha
ter, the interaction term drops exponentially with distan
from its original magnitudeVm . It is also assumed here tha
the protein molecule is located at site, of the DNA chain.
The Fourier transform of the time-dependent part of the
teration in Eq.~3.7!

f m~ t !5
1

2ū E2`

1`

dve2 ivt f m~v!

yields

f m~v!52Vme2s2~m2, !2Fsin~ t̃v!

v Geivt̃m. ~3.8!

Since the breather solitons in DNA can be generated
different ways, various causes that have been suggeste
clude the thermal fluctuations as well as local ligand-prot
interactions considered here, in addition to the chemical
ergy released during ATP hydrolysis. It is apparent to us t
in a very long DNA chain an ideal gas of breathers can
generated via one or several of these mechanisms. Co
quently, we need to develop a statistical approach in orde
compute the average value of the base-pair displacemen
sulting in the process. For this purpose we use the w
known method of nonequilibrium statistical mechanics d
veloped by Zubarev@23# according to which the averag
value of an arbitrary physical operatorÂ can be evaluated a

^A&5^A&01 (
n51

` S 1

i\ D nE
2`

t

dt1E
2`

t1
dt2

3E
2`

t2
dt3¯E

2`

tn21
dtn21Tr$A~ t !H int~ t1!

3†H int~ t2!¯@H int~ tn!,r0#‡%, ~3.9!

where^A&0 is the average value with respect to the dens
matrix r0 pertaining to the system@Eqs. ~3.3! and ~3.4!#
unperturbed by the interaction, Eq.~3.5!. The square bracket
above stand for the corresponding commutators, and
means the trace.

If we retain only the two leading terms, Eq.~3.9! then
yields

^A&5^A&01
1

i\ E
2`

t

dt1Tr$A~ t !@H int~ t1!,r0#%

2
1

\2 E
2`

t

dt1E
2`

dt1
dt2Tr$A~ t !†H int~ t1!,@H int~ t2!,r0#‡%.

~3.10!
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SubstitutingA5y, , into Eq. ~3.10! gives for the average
displacement at lattice site,

^yl &5^yl &01E
2`

`

dt1^^y,~ t !uH int
op~ t1!&& f ~ t1!1E

2`

1`

dt̃1

3E
2`

1`

dt̃2^^y,~0!uH int
op(2 t̃1!iH int

op~2 t̃12 t̃2!&&

3 f ~ t2 t̃1! f ~ t2 t̃12 t̃2!¯ , ~3.11!

where the Green’s functions have been introduced as
lows:

^^y,~0!uH int~2 t̃1!iH int~2 t̃12 t̃2!&&

5
1

~ i\!2 u~ t̃1!u~ t̃2!Tr$y,~0!

3†H int~2 t̃1!,@H int~2 t̃12 t̃2!,r0#‡%¯ . ~3.12!

The average base-pair displacement could be rewri
following the above technique as

^yl &5^yl &01(
m

E
2`

1`

dt1f m~ t1!^^y,~ t !uwm~ t1!&&

1(
m,n

E
2`

1`

dt̃1E
2`

1`

dt̃2f m~ t2 t̃1! f n~ t2 t̃12 t̃2!

3^^y,~0!uwm~2 t̃ !iwn~2 t̃12 t̃2!&&. ~3.13!

Since the commutator@y,(t),wm(t1)# equals identically zero
(@y, ,ym#50), we conclude that only the last term in E
~3.11! remains to be evaluated. Let us denote it by^y,& (2) ,
so we can write

^y,&~2!5(
m,n

S 1

2p D 2E
2`

1`

dv1E
2`

1`

dv2f m~v1! f n~v2!

3^^y,~0!wmiwn&&e
2 i t ~v11v2!. ~3.14!

Starting from the identity for Green’s functions

^^y,~0!uH int~2 t̃1!iH int~2 t̃12 t̃2!&&

5S 1

2p D 2E
2`

1`

dv1E
2`

1`

dv2eiv1t̃1
•e2v2~ t̃11 t̃2!

3^^y,~0!uH intiH int&&v1 ,v2
~3.15!

we can make the following expansion:

\~v11v212i e!^^y,~0!uwmiwn&&v11 i e,v21 i e

5^^@y, ,wm#uwn&&v21 i e

1^^@y,~0!,H0#uwmiwn&&v11 i e,v21 i e . ~3.16!

We once again remove the first term on the right-hand sid
Eq. ~3.16! and proceed to scrutinize the second term

\~v11v212i e!^^y,~0!uwmiwn&&v11 i e,v21 i e

5
i\

M
^^Py,uwmiwn&&v11 i e,v21 i e , ~3.17!
1-7
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where we have used the commutation relation@y, ,H0#
5Py, .

Let us proceed with expanding Eq.~3.17! as follows:

\~v11v212i e!5^^Py,uwmiwn&&v11 i e,v21 i e

5^^@Py, ,wm#uwn&&v21 i e

1^^@Py, ,H0#uwmiwn&&v11 i e,v21 i e .

~3.18!

Taking into account the commutators involved, namely,

@Py, ,wm#52 i\d,,m~Ck1Ck
1!

and

@Py, ,H0#5 i\&aD@exp~22&ay,!2exp~2&ay,!#
~3.19!

followed by the use of the decoupling of Green’s functio
according to

^^Ck1Ck
†!u~Ck1Ck

†!y,&&v21 i e

5^y,&^^~Ck1Ck
†!u~Ck1Ck

†!&&v21 i e ,

we finally obtain

\~v11v212i e!^^Py,uwmiwn&&

52id,,m

Vk

~v21Vk1 i e!~v22Vk1 i e!
^y,&

1 i2&\aD$^^@exp~22&ay,!

2exp~2&ay,!#uwmiwn&&v11 i e,v21 i e%, ~3.20!
05190
whereVk5Ek /\, with Ek being the energy of the amide-
excitation of the regulatory protein attached. Subsequen
we continue evaluating two commutators of exponenti
with Py, and decoupling the Green’s function involved,
arrive at the rather involved expression for^y,& (2) ,

^y,&~2!528
~ t̄ !2

M\ (
n

1

~2p!2 E
2`

1`

dv1E
2`

1`

dv2V,Vn

3e2s2~n2, !2
^yn&0 j 0~ t̃v1! j 0~ t̃v2!

3
Vk exp@ iv1~ t̃,2t !#exp@ iv2~ t̃n2t !#

~v11v212i e!2~v21Vk1 i e!~v22Vk1 i e!

3H 11

8
a2D

M
^exp~22&ay,!&0

~v11v212i e!S v11v21
4\a2

M
12i e D

2

4
a2D

M
^exp~2&ay,!&0

~v11v212i e!S v11v21
\a2

M
12i e D J ,

~3.21!

wherej 0(x)5sinx/x represents the zeroth order Bessel fun
tion. The only task still remaining is the integration wit
respect tov1 and v2 . This is accomplished through fairly
cumbersome calculations of Cauchy integrals, which even
ally yield an elegantly symmetric but large expression for
average base-pairs displacement impacted by a regula
protein attached to the DNA chain,
^y,&5^y,&01(
n

V,Vn^yn&0e2s~n2, !2
8

~ t̃ !2

M\
j 0~ t̃Vk!Ht̃• j 1~ t̃Vk!cos@Vkt̃~n2, !#

2~ t̃,2t ! j 0~ t̃Vk!sin@Vkt̃~n2, !#12
a2D

M
F$t̃~ t̃2t ! j 1~ t̃Vk!sin@Vkt̃~n2, !#2 1

2 ~ t̃ !2 j 2~ t̃Vk!

3cos@Vkt̃~n2, !#1 1
2 ~ t̃2t !2 j 0~ t̃2Vk!cos@Vkt̃~n2, !#%

4

vM
@^exp~22&ay,!&022^exp~2&ay,!&0#

1 j 0~ t̃Vk!cos@Vkt̃~n2, !#
4

vM
3 @^exp~22&ay,!&0232̂ exp~2&ay,!&0#2

1

vM
3 X2^exp~22&ay,!&0

3$ j 0~ t̃@Vk1vM# !cos@Vkt̃~n2, !2vM~ t̃,2t !#1 j 0~ t̃@Vk2vM# !cos@Vkt̃~n2, !1vM~ t̃,2t !#%

264̂ exp~2&ay,!&0H j 0S t̃FVk1
vM

4 G D cosFVkt̃~n2, !2
vM

4
~ t̃,2t !G

1 j 0S t̃FVk2
vM

4 G D cosFVkt̃~n2, !1
vM

4
~ t̃,2t !G J CGJ . ~3.22!

Here the new characteristic frequencyvM represents

vM5
4\a2

M
, ~3.23!
1-8
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and j 1(x) and j 2(x) stand for the corresponding Bessel functions. Note that the notation^¯&0 indicates an average value wit
respect to the density matrixr0 of the unperturbed system, Eq.~3.2!.

The rather complex expression in Eq.~3.22! will now be significantly simplified due to the fact that the impact of prote
on the base-pair displacements is greatest with respect to the coupled base pair. Consequently we may putn5, and t5 t̃,,
thus yielding

^y,~ t̃, !&5^y,&018
~ t̃ !2

M\
V,

2^y,&0 j 0~ t̃Vk!S t̃ j 1~ t̃Vk!12
a2D

M
H2 1

2 ~ t̃ !2 j 0~ t̃Vk!
4

vM
@^exp~22&ay,!&0

22^exp~2&ay,!&0#1 j 0~ t̃Vk!
4

vM
3 @^exp~22&ay,!&0232̂ exp~2&ay,!&0#2

1

vM
3 F2^exp~2&ay,!&0

3$ j 0~ t̃@Vk1vM# !1 j 0~ t̃@Vk2vM# !%264̂ exp~2&ay,!&0H j 0S t̃FVk1
vM

\ G D1 j 0S t̃FVk2
vM

\ G D J GJD .

~3.24!
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Substituting the parameter valuesa and M from Eq. ~2.23!
and using the definition ofvM , Eq. ~3.23!, leads to the fol-
lowing estimate:

vM53.1011 rad/s. ~3.25!

Therefore, the expression~3.22! could be further simpli-
fied discarding the terms proportional tovM

23, and eventually
yielding a manageable formula

^y,~ t̃ !&5^y,&0H 11
8V,t̃3

M\
j 0~ t̃Vk! j 1~ t̃Vk!

1
8V,

2D t̃4

M\2 j 0
2~ t̃Vk!@2^exp~22&ay,!&0

2^exp~2&ay,!&0#J . ~3.26!

In order to estimate and discuss the numerical value of
~3.26!, we first focus on the equilibrium average displac
ment of base pairŝy&0 without the impact of regulatory
proteins. The corresponding statistics was examined ea
by other authors for the case of thermal fluctuations in
DNA chain @24# and then extended later by one of th
present authors for the case where the intrinsic electrom
netic fields play a catalytic role in the breather’s dynam
@25#. In the case of thermal excitations it was estimated t
the average base-pair stretching at physiological temp
tures is of the order

^y,&0.1310211 m, ~3.27!

while in the case of strong intrinsic ac fields@25# the value
increases by up to another order of magnitude so that

^y,&0
AC.1310210 m, ~3.28!

enabling the appearance of the so-called fluctuational op
ings in the DNA chain. If we useVk from Eq.~3.4! and take
05190
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the interaction timet̃ as equal to the amide-I mode lifetim
putting t̃510212 s, we obtain

t̃Vk.33102. ~3.29!

Therefore, this large value of the argument allows us to t
into account the asymptotic behavior of the Bessel functi
involved, i.e.,

j 0~ t̃Vk!.
sin~ t̃Vk!

t̃Vk
; j 1~ t̃Vk!.

sinS t̃Vk2
p

2 D
t̃Vk

,

~3.30!

which transforms Eq.~3.26! into the more transparent form
given below

^y,~ t̃ !&5^y,&0H 12
4V,

2t̃

M\Vk
2 sin@2~ t̃Vk!#

1
8V,

2D t̃2

M\2Vk
2 sin2 ~ t̃Vk!@2^exp~22&ay,!&0

2^exp~2&ay,!&0#J . ~3.31!

From Ref. @26# it follows that the average force of th
hydrogen bonds in DNA base complexes is in the range
about 3310210 N. This force could be attributed to th
hydrogen-bridged interaction termV, in Eq. ~3.31!. Taking
the valueM55.4310224 kg, we estimate that the secon
term in the curly brackets of Eq.~3.31! is on the order of

4V,
2t̃

M\Vk
2 <1022. ~3.32!

Let us finally estimate the third term including the no
linear Morse potential in the model we have developed he
In addition to the value adopted above, we take into acco
D50.1 eV andy,.10211 m yielding
1-9
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8V,
2D t̃2

M\2Vk
2 sin2~ t̃Vk!@2^exp~22&ay,!&0

2^exp~2&ay,!&0#.2.5 sin2~ t̃Vk!. ~3.33!

Note that the expression in Eq.~3.33! is highly sensitive to
the value (tVk) that reveals resonant character of the p
cess for

sin~tVk!→1. ~3.34!

We infer, therefore, that the regulatory proteins would sim
larly increase the breathers amplitude.

IV. CONCLUSIONS AND DISCUSSION

In this paper we have considered an application of
Peyrard-Bishop model in our extended version to the non
ear dynamics of DNA in the presence of regulatory protei
Our initial thrust was directed towards specifying the mo
parameters for the case of the DNA double helix. While th
still remains a certain amount of ambiguity regarding t
numerical values that should be adopted for DNA, we ha
tried to make our numerical value selections as safe as
sible. It has been concluded through our analysis tha
breather solution is likely to be generated spontaneousl
by external means, such as protein-DNA interactions or A
m

io

05190
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hydrolysis effects. We have investigated the possibility
long-range breather propagation as a result of the prot
DNA binding. The motivation for this effort was given by
number of empirical studies showing a rather intrigui
long-range interaction effect of one protein binding site
another along the DNA chain. The application of the P
model to this case involved an addition of the amide-I mo
to the DNA Hamiltonian and its interaction with DNA bas
pairs. In order to evaluate realistic effects at physiologi
temperatures we have subsequently calculated nonequ
rium thermodynamic averages of the displacement coo
nates. The key finding in this study is that both the spa
and temporal characteristics of the localized solution can
significantly extended by protein-DNA interaction. Furthe
more, the nature of the system’s response is strongly re
nant offering a glimpse into the high levels of specifici
involved in the DNA functioning. We hope that this latte
finding can be supported by future experimental results
garding DNA-protein interactions.
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